0253 Effect of cavity-configuration and thermocycling on adhesion of low-shrinking composite

A. MINE¹, J. DE MUNCK¹, K. VAN LANDUYT¹, A. POITEVIN¹, T. KUBOKI², Y. YOSHIDA², K. SUZUKI², P. LAMBRECHTS¹, and B. VAN MEERBEEK¹, ¹Leuven BIOMAT Research Cluster, Catholic University of Leuven, Belgium, ²Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Japan

Objectives: Polymerization shrinkage stress can impair bonding effectiveness, especially at the bottom of a high C-factor occlusal class-I cavity. The purpose of this study was 1) to evaluate the effect of a low-shrinking composite on the bonding effectiveness in a high polymerization shrinkage stress environment and 2) to evaluate the effect of thermo-cycling on these pre-stressed interfaces.

Methods: A new low-shrinking composite (els, Saremco) was bonded into standardized occlusal class-I cavities (4.5x4.5x2.5 mm) using a 3-step etch-andrinse adhesive (cmf, Saremco). A 2-step etch-and-rinse adhesive (XP Bond, Dentsply) and a conventional composite (Z100, 3M ESPE) served as control. The restored teeth were subjected to 20,000 thermo-cycles or 3 weeks of water storage. Then, the teeth were sectioned to 1x1 mm sticks by an automated, water-cooled diamond saw (Accutom, Struers), of which the 4 central sticks were further processed for micro-tensile bond strength (μ TBS) testing (5 teeth per group were used).

Results: 3-way ANOVA revealed a significant effect for the adhesive and composite

(both p<0.0001), but no effect for thermo-cycling (p=0.994).

mean ± SD (ptf/n)	control	20,000 thermo-cycles
cmf/els	26.2 ± 9.2 MPa ^{a,b} (0/20)	27.5 ± 9.2 MPa ^a (0/20)
cmf/Z100	$16.3 \pm 16.9 \text{ MPa}^{b,c,d} (7/20)$	$20.3 \pm 13.6 \text{ MPa}^{a,b,c} (1/20)$
XP Bond/els	13.7 ± 12.1 MPa ^{c,d} (3/20)	8.3± 10.5 MPa ^{d,e} (9/20)
XP Bond/Z100	$0.0 \pm 0.0 \text{ MPa}^{\circ} (20/20)$	0.1± 0.4 MPa ^e (19/20)

ptf = pre-testing failure = 0 MPa. Means with the same superscript are not statistically different (Turkey multiple comparisons, p<0.05).

Conclusion: The low-shrinking composite in combination with the 3-step etch-and-rinse adhesive provided the best bonding performance, even after thermo-cycling. The 2-step etch-and-rinse adhesive suffered strongly from polymerization shrinkage stress, which could be partially restored by using the low-shrinking composite.

Seg #23 - Adhesion - Dentin - Prosthodontics

3:30 PM-5:30 PM, Wednesday, September 10, 2008 Queen Elizabeth II Conference Centre Theatre A

Back to the PEF IADR 2008 Program

Back to the Pan European Federation of the International Association for Dental Research (September 10-12, 2008)

Top Level Search